Welcome to the CJU website » LOG IN


Surgical flow disruptions during robotic-assisted radical prostatectomy
Division of Urology, Cedars-Sinai Medical Center, Los Angeles, California, USA
Jun  2017 (Vol.  24, Issue  3, Pages( 8814 - 8821)
PMID: 28646936


Text-Size + 


    We sought to apply the principles of human factors research to robotic-assisted radical prostatectomy to understand where training and integration challenges lead to suboptimal and inefficient care.


    Thirty-four robotic-assisted radical prostatectomy and bilateral pelvic lymph node dissections over a 20 week period were observed for flow disruptions (FD) - deviations from optimal care that can compromise safety or efficiency. Other variables - physician experience, trainee involvement, robot model (S versus Si), age, body mass index (BMI), and American Society of Anesthesiologists (ASA) physical status - were used to stratify the data and understand the effect of context. Effects were studied across four operative phases - entry to insufflations, robot docking, surgical intervention, and undocking. FDs were classified into one of nine categories.


    An average of 9.2 (SD = 3.7) FD/hr were recorded, with the highest rates during robot docking (14.7 [SD = 4.3] FDs/hr). The three most common flow disruptions were disruptions of communication, coordination, and equipment. Physicians with more robotic experience were faster during docking (p < 0.003). Training cases had a greater FD rate (8.5 versus 10.6, p < 0.001), as did the Si model robot (8.2 versus 9.8, p = 0.002). Patient BMI and ASA classification yielded no difference in operative duration, but had phase-specific differences in FD.


    Our data reflects the demands placed on the OR team by the patient, equipment, environment and context of a robotic surgical intervention, and suggests opportunities to enhance safety, quality, efficiency, and learning in robotic surgery.